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This paper investigates the phenomenology of electrical signatures being unintentionally injected onto the 
mains electricity supply by a range of common household devices. Measurements were made of both current 
time-series and voltage spectra of a variety of devices, using commercially-available measurement 
equipment designed for electromagnetic compatibility testing. The measurements give strong evidence that 
multiple devices can be identified from either their current transient when switched on or off, or their voltage 
spectrum when running. While some devices are readily identifiable, even in the presence of large amounts 
of noise, for low power devices it may be necessary to perform filtering of the mains signal to obtain spectra 
with a suitable signal-to-noise ratio. For certain types of device, spectral signatures of particular instances 
of the same device appear to be separable in high signal-to-noise ratio environments. For example, it may be 
possible to identify a specific laptop charger among other chargers of the same make and model.  
The relevant measurements can be made outside buildings, and when combined with other intelligence, 
could be used to obtain remote intelligence of building interiors. 

INTRODUCTION 
Modern electrical equipment, even if tested for electromagnetic compatibility (EMC), still unintentionally 
injects signals onto the mains electricity supply. An EMC probe typically measures frequencies in the range 
9 kHz to 30 MHz. We postulate that information about equipment plugged into the mains can be determined 
from this signal. Inductive loads produce a noticeable impact on the mains signal; other types of equipment, 
from individual switched mode power supplies to data centre loads, will also induce a measurable harmonic 
signal. Particular makes or items of equipment may produce unique detectable signals and useful information 
about the “pattern of life” of equipment could be deduced from the times-series evolution of the mains 
current. This would allow information about what is happening inside the building to be determined.  
This has applications for smart metering or intelligence gathering. 

This paper summarizes results of a measurement programme to investigate the phenomenology of electrical 
signatures. Standard EMC test equipment has been used in a novel manner. Rather than testing whether peak 
signals of a given frequency are below a specific value, which is the criterion for European certificate (CE) 
marking, we have measured the spectral content and time domain signature in sufficient detail to determine 
whether each device has a unique “fingerprint”. 

EXPERIMENTAL APPROACH 
Two types of measurement have been made. Firstly, spectral measurements of the live mains voltage were 
obtained for different devices. Secondly, current measurements were taken during the process of switching 
devices on and off, to determine whether this transient signal can be used to identify devices. 

To explore the phenomenology of both spectral and time series processes and to identify practical 
measurement issues, experiments were performed under various conditions. To examine the inherent 
phenomenology, measurements were taken using a heavily filtered mains input supply, such that any 
identified characteristics were not due to external conditions. The measurements were made in a shielded 
chamber with 100 dB of filtering; an additional 40 dB of filtering was used in the spectral analyzer.  
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In addition to this, measurements were taken with a consumer unit typically used with building electrical 
supplies and 15 m long length of mains cord, to better simulate a real world measurement scenario. Finally, 
measurements were also taken with an unfiltered electricity supply, to simulate a non-invasive solution that 
doesn’t modify a building’s mains connection. 

Measurements were taken for the following devices: filament, halogen, fluorescent, and light emitting diode 
(LED) bulbs; desk fan; power drill; Nokia and Samsung mobile phone chargers; two different models of Dell 
laptop charger (including two instances of each model); cathode ray tube (CRT) television; and flat-screen 
LED television. These devices were selected to cover a broad range of characteristics and have significant 
variance in the amount of power consumed. Details about the make and model of each device are given in 
Table 1. 

Table 1: Electrical equipment tested.  

Item Make and Model 

Incandescent lamp Status, B11G screw, 15 W 

Fluorescent lamp  Megaman, B11G screw, 7 W, BR0107 11W51 GBC01 

Desktop fan Munro, 45 W, PF18, Setting 3 

Power drill Black & Decker, H720H H-15 

Mobile phone chargers,  
loaded by a phone 

Samsung SGH-E370 phone (Samsung TAD137UBE 
charger/ Nokia ACP-8X charger), Nokia 6301 phone  
(Nokia AC-11X charger)  

Laptop chargers,  
loaded by a laptop 

Dell Latitude C640 PP01L Laptop, (2x Dell PA-1900-05D 
chargers: RevL02/RevL04, 2x Dell AA20031 chargers: 
G20208/N15773) 

Television (cathode ray tube) Matsui, 14V1R 

Television (flat screen) Technika, LED 22-248COM 

LED lamp (230 V) Diall, GU10 fitting, 6.5 W, GU10HV-4H-WH3 

Halogen lamp Fuxing, GU10 fitting, 50 W, DCL-13W08 

A Rohde & Schwarz ESR7 EMI Test Receiver and controller PC were used to measure the voltage supply 
spectrum while devices were running. The recorded spectra cover the range from 9 kHz to 30 MHz in two 
bands below and above 150 kHz, with 15 Hz and 2.985 kHz bandwidths respectively. Spectra for each band 
were computed based on a fast Fourier transform of 10 s of measured data. Typically this device is used to 
measure peak voltages when testing for compliance with regulations but it can also produce average spectra. 
It is presumed that average data hold more useful information, so both maximum and average values were 
recorded. External noise was filtered out using a line impendence stabilization network (LISN). A L289 
R&S ESH3-Z5 device was used to perform this function and to provide voltage probes for connection to the 
spectral analyzer. 

Multiple spectra were recorded on different days for each device to determine consistency across time. 
Ambient measurements were also taken without any devices attached to the system, so that a baseline 
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spectrum could be determined to enable identification of spectral features relative to the background noise. 
For each run of experimental tests, an ambient signal was measured before and after the run. This process 
was repeated until enough data was collected to make firm conclusions about the data. 

Root mean-square (RMS) live current transient signals were recorded with the Newtons 4th Power Analyzer 
PPA5531 and a controller laptop. The transient is measured with a time resolution of 20 ms, which is one 
period of the 50 Hz supply cycle. For devices that have a standby state, transients were recorded for the 
power cycle: standby, active, standby. For all other devices, data was recorded for the cycle: power off, 
power on, power off. Each data set was recorded so that the transient cycle was repeated ten times, with a 
minimum ten second delay between each phase of the cycle. For the flat-screen television, a much longer 
transient was recorded due to it having a multi stage internal process when activating and deactivating the 
device. The current signals were recorded without the use of the LISN, with a consumer unit and with a 15 m 
extension lead. These measurements are representative of what could be obtained in the field with a passive 
measurement device. 

SPECTRUM MEASUREMENTS 

Initial experiments compared maximum and average value spectra computed over the measurement window. 
Average spectra were found to be more consistent and these are presented here. During the first day of 
testing, measurements for the filament and halogen bulbs and the desk fan were found to be indistinguishable 
from the ambient spectrum. This is to be expected as these devices are purely resistive or inductive loads and 
further measurements of these devices have not been made. 

Device voltage spectra measured using a LISN filtered mains supply are shown in Figure 1. Both the device 
spectrum and an ambient spectrum are shown in each subplot. The device spectra are significantly visually 
distinct from each other, with identifiable features across the whole frequency range from 9 kHz to 3 MHz. 
Spectra above 3 MHz are not plotted because at these frequencies changing the length of mains cable caused 
changes in the spectra. Since a practical system must be stable with respect to the length of wiring within a 
building these frequencies cannot be used. At frequencies below 3 MHz, each device spectrum was relatively 
stable. The step change visible at 150 kHz is an artefact of the spectrum analyzer, which recorded the signal 
in two phases with a bandwidth change at the boundary. This is not a feature of the devices themselves. 
There was a high correlation between measurements made on the live and neutral wires. Differences 
between these measurements are not critical and, with limited time at the test facility available, it is more 
important to obtain a large number of live measurements to obtain reliable statistics than compare live and 
neutral signals. Therefore the conclusions in this paper are based on live measurements only. The presence or 
absence of a consumer unit in the experimental setup made no discernible impact on the measured signals. 
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Figure 1: Typical device voltage spectra measured in isolation using a filtered mains supply. 

Both device and ambient spectra were consistent across different measurement runs. For most frequencies 
the variation was almost always less than 5 dB and usually less than 1 dB. The only exceptions were the flat 
screen television, which showed a slightly higher variation, and the drill spectrum in the upper band, which 
varied according to pressure on the manually operated trigger. Devices with “on” and “standby” modes had 
similar spectra in each of these modes, with the “on” mode having additional peaks due to additional 
circuitry used. 

As well as performing analysis under strict laboratory conditions, measurements were made using an 
unfiltered mains supply. At the time of measurement, the supply simultaneously fed multiple labs running 
computers and other electronic equipment, as well as control systems for chambers at the test facility and 
kitchen and bathroom utility rooms. The number and variation of devices in this uncontrolled environment is 
considerably higher than in a typical residential building. Much of the ambient unfiltered signal is associated 
with various UK radio broadcast frequencies. There is, therefore, potential to remove these signals using 
signal processing based on known signal characteristics. However, this has not been performed for the 
present analysis. 

The higher-power drill and CRT devices had spectral components at various frequencies exceeding the 
unfiltered background signal, meaning these devices should readily be detectable. The laptop chargers, 
Samsung mobile phone charger, and LED bulb had some above-background power above 1 MHz, with 



Measurements for Remote Identification of Electrical Equipment 
 

STO-MP-SET-247 5 - 5 

PUBLIC RELEASE 

 
PUBLIC RELEASE 

potential for detection. Other devices had no significant above-background energy at any measured 
frequency. These devices would be difficult to detect based on power spectra alone. However, these 
observations are based on a particularly challenging scenario, and it may be possible to detect more devices 
in a less noisy environment.  

The above measurements demonstrate that most devices in isolation are identifiable from their spectral 
signature. However, in practice a multitude of devices are simultaneously powered by the same supply.  
To explore how spectra combine, measurements were taken with pairs of device connected to a filtered 
supply. A selection of combinations was chosen to cover the full range of power use, from the highest power 
device (drill) to the lowest power (Samsung and Nokia phone chargers). Analysis of the data showed that the 
signals could be approximated by an additive linear system. Although this result was expected from circuit 
theory, it was useful to test that no non-linear components were introduced by the measurement setup. Since 
power measurements are recorded on the non-linear logarithmic decibel scale and phase information was not 
recorded, the spectra in Figure 1 cannot simply be added. However, adding individual device spectra in 
quadrature in practice produces results similar to combined spectra. For most device combinations at least 
one distinct frequency peak per device is visible in the combined spectrum. However, when the high power 
drill is in operation, its spectrum typically dominates those of the other devices. 

A set of nominally identical devices would be expected to have small variations in their spectra due to 
manufacturing differences. For each model of Dell laptop charger, two specific instances of the same charger 
with different serial numbers were available for testing. Figure 2 shows that the overall spectral shape and 
location of peaks are very similar for the two instances. For the AA20031 the shapes of the spectra are nearly 
identical, with small shifts in frequency and power. For the PA1900, spectra share similar peak structures 
above 150 kHz, but there is more variation in the low frequency range. More measurements are required to 
determine the extent to which these differences vary with external factors such as temperature, device age, 
and loading conditions. While it would not be expected that an individual device could be identified from the 
pool of all manufactured instances, information in addition to the spectrum could be used to provide a more 
robust identification. 

 

Figure 2: Typical spectra for nominally identical devices. 
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TIME SERIES MEASUREMENTS 

Typical current signals when devices are switched on and then off are shown in Figure 3. The devices follow 
a pattern of a large in-rush current, followed by a steady state. For some devices, namely the bulbs and 
Samsung mobile phone charger, the signal does not exhibit other characteristics. In these cases the only 
differentiating factor between the transitions is the steady state current. However, other devices have more 
structure to their transient signals. The laptop chargers and the phone chargers have a small region between 
the in-rush and steady-state period where the current drops back to near the background level. The drill and 
desk fan both slowly transition to the steady state. Finally, the flat-screen and CRT televisions have more 
complex, multi-stage transients. In the case of the flat-screen TV there is also a characteristic signal during 
the powered-to-standby transition. The PA1900 model of Dell laptop charger has a very noisy steady state 
current compared to other devices. 

 

Figure 3: Transient current signals when devices are switched on then off. 

Automated classifiers require some consistency between different measurement runs of the same device.  
The steady state current of the bulbs and Samsung charger are very consistent over time, although there is 
more variation in the measured peak value of the in-rush current. The drill, desk fan, and flat-screen 
television transient signals are relatively constant across different measurement runs. Figure 4 shows 
transient signals for the Dell AA20031 laptop charger. Timings for this signal are fairly constant but for 
reach run measured there was a decrease in the steady state current from 400 mA in the first run to 300 mA 
in the tenth run. Two of the later runs saw the current drop to 50 mA for a period of 1 to 2 seconds before 
returning to normal. This is likely due to different charge states as the battery is charged up. 
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Figure 4: Transient current signals for the Dell laptop charger (AA20031). 

Figure 5 and Figure 6 show transient signals for the Nokia phone charger and CRT television. Both devices 
have in-rush currents followed by a quiet period and then a higher steady state current. The quiet period 
duration varied between runs from 1 to 6 s for the charger and 4 to 6 s for the television. Figure 7 shows 
measurements for the PA1900 Dell laptop charger. The duration of quiet period is relatively constant with a 
spike about 0.7 s after switch on. However, the exact timing of the rapid peaks that start about 2 s after being 
switched on varies between runs. 

 

Figure 5: Transient current signals for the Nokia mobile phone charger. 
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Figure 6: Transient current signals for the CRT television. 

 

Figure 7: Transient current signals for the Dell laptop charger (PA1900). 

MACHINE LEARNING 

Supervised learning techniques build a model of labelled data and perform classification predictions for new 
signals. Typically, multi-dimensional feature vectors are used to represent data. These features can either be 
the raw data, which would consist of the power in each frequency bin for the spectral measurements, or some 
other feature constructed from the data. Extracted features could include the mean power, number of peaks, 
total energy in certain frequency bands, or the distance between certain peaks. Manually defined features 
have the advantage of using expert knowledge of which aspects of the data provide a discrimination 
capability but it can be time consuming to determine such features. Raw features can immediately be used as 
an input to the classifier. However, certain devices, such as the laptop chargers shown in Figure 2 exhibit 
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characteristics based on relative rather than absolute frequencies. Therefore some work needs to be done in 
defining relevant features. A general detailed discussion about various classifiers with their advantages and 
disadvantages is given in [1]. A survey focused on specifically on appliance load monitoring is given in [2]. 
For both spectrum and time series classifiers it is likely that more measurements will be required to train a 
classifier. 

Spectrum classification allows the detection of some steady-state signals. However, for some devices these 
signals are too similar to each other and the unfiltered ambient noise may be too high at frequencies of 
interest for classification to take place. The alternative is to analyze the current time series of devices. In 
addition to detecting the presence of a device, this enables the possibility of determining the precise time at 
which it is switched on or off. A variety of time series classification techniques exist; a review of these is 
given in [3]. There are two major approaches. The first is to extract fixed-dimension features from the time 
series and then use standard machine learning algorithms. The second approach is to use some property of 
the data arising from the fact that it is a time series. Candidates for this type of algorithm are: template 
matching, specialized neural nets, and dynamic time warping. 

Template classifiers define a windowed template for each class constructed by averaging over aligned 
training data segments extracted from a long time series. In testing, the cross-correlation between the test 
signal and each template is calculated. The template with the highest correlation is used to label the data. 
This procedure is invariant to translations (time delays) of the signal. Implicit assumptions used in this 
classifier are: raw data have independent identically distributed Gaussian statistics; and signals do not 
undergo deformations in time other than delays. The identical distribution assumption does not apply to most 
devices as the magnitude of the measured in-rush current varies significantly more than that of the steady-
state current. Also, device signals undergo temporal distortions that are not simple delays. This reduces the 
practicality of this classifier. 

Neural nets are arranged in layers with each layer providing a non-linear map from its input to output, 
enabling a non-linear decision boundary in measurement space. Invariance with respect to signal translation 
can be incorporated in convolutional neural nets (CNNs) by imposing a certain structure on the net and using 
shared weights. When applied to time series they are sometimes referred to as time delay neural nets [4].  
A convolutional layer in a CNN learns several “feature maps”, which are the convolution of the layer below 
with a kernel learnt during training. The network normally includes a pooling layer, which allows for minor 
temporal distortions in the signal. CNNs have been successful in image recognition, but their application to 
time series classification has received less attention. A recurrent or recursive neural net has feedback 
between layers and is typically designed to learn sequential or time-varying patterns. Due to feedback loops, 
the back-propagation algorithm used to train standard feedforward nets cannot be used and more complex 
algorithms are required [5]. 

Dynamic time warping (DTW) is a technique for finding the optimum temporal warping function between 
two signals with non-linear distortions in time [6]. A distance measure based on the warping function and 
cost metric is then used as part of a nearest neighbour classifier algorithm. Since DTW allows any monotonic 
warping function, the standard algorithm may produce unrealistic distortions. These can be limited by setting 
a window size and only calculating warps within this window, which also speeds up the algorithm. The cost 
matrix is based on insertion, deletion, or retention of samples as two signals are processed from beginning to 
end. An example cost matrix for two CRT signals from Figure 6 is shown in Figure 8, along with the 
optimum warping function. There are four regions of low cost from approximately sample 1 to 50, 51 to 300, 
400 to 550 and 600 to 650. These regions are associated with parts of the signal where time distortions have 
little effect as the signals are similar in amplitude: before switch on, waiting for warm-up, after warm-up, 
and after switch off. The large increase in cost when one of the signals is held at a sample from 1 to 50 and 
the other signal is progressed beyond sample 50 is due to the sharp increase in current at sample 50 when the 
device is switched on. The algorithm has determined that unless both signals undergo this change at similar 
times then the signals must be quite different. Other regions of slightly increased cost are due to mismatches 
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in the start of the warm-up period and switch-off time. In practice, the time series difference should be used 
rather than the direct time series to ensure that superimposed signals are correctly dealt with. 

 

Figure 8: Cost matrix and optimal warping function between two signals. 

RELATED WORK 

There have been several other efforts to detect operation of individual devices based on the energy  
supply. These are aimed at cooperative smart meter applications for reducing energy usage in the home.  
The techniques are referred to energy disaggregation, disambiguation, non-invasive load monitoring, or 
cognitive metering. 

A comprehensive review of the benefits, data, algorithms, hardware, and applications of electricity 
disaggregation is given in [7]. This type of technique is also possible using gas and water supplies. Most 
developed countries are planning the introduction of smart meters, which could be modified to have a device 
detection capability. However the sampling rate of most meters is not likely to be high enough to detect all 
devices of interest and additional sensors are required. An example bespoke sensing system and associated 
algorithm to detect and classify electrical devices in the home is given in [8]. Signatures were found to be 
repeatable and stable over a period of six months. 

One example of a system that tries to prevent remote detection of building occupancy by modulating a water 
heater power supply is given in [9]. However, that system does not mask signals that can be detected using 
sub-minute measurements. 
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CONCLUSION 

A range of common household electrical devices can be identified from the voltage power density spectrum 
they superimpose onto the mains. While some devices are readily identifiable when passively measuring 
these signals, for low power devices it may be necessary to perform filtering of the mains input to obtain 
suitable spectra. Based on a small sample of devices to date, spectral signatures of particular instances of the 
same device appear to be separable, such that a laptop charger may potentially be identifiable with access to 
corroborating information. By looking at current transients, it is also possible to determine when devices are 
switched on or off, and more complex devices can be identified by the shape of their transient signal. 
Combined with other intelligence, analysis such as this could provide useful information on the activities 
happening within a building. 
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